Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
2.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215741

RESUMO

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Assuntos
Criptococose , Cryptococcus neoformans , Fungicidas Industriais , Pneumonia , Animais , Camundongos , Anfotericina B/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Fungicidas Industriais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia
3.
Infect Dis Poverty ; 12(1): 20, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932414

RESUMO

BACKGROUND: Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. METHODS: We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. RESULTS: There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. CONCLUSION: The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.


Assuntos
Cryptococcus neoformans , Infecções por HIV , Meningite Criptocócica , Micoses , Humanos , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/epidemiologia , Meningite Criptocócica/complicações , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Micoses/complicações , Micoses/tratamento farmacológico
4.
Appl Environ Microbiol ; 88(13): e0043722, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736228

RESUMO

The amino sugar N-acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster essential for GlcNAc utilization in Cryptococcus deneoformans, an environmental human fungal pathogen. The C. deneoformans genome contains a GlcNAc transporter (Ngt1), a GlcNAc kinase (Hxk3), a GlcNAc-6-phosphate deacetylase (Dac1), and a glucosamine-6-phosphate deaminase (Nag1). Their expression levels were highly induced in cultures containing GlcNAc as the sole carbon source, and the corresponding mutants showed severe growth defects in the presence of GlcNAc. Functional and biochemical analyses revealed that HXK3 encodes a novel GlcNAc kinase. Site-directed mutations of conserved residues of Hxk3 indicated that ATP binding and GlcNAc binding are essential for GlcNAc kinase activities. Taken together, the results from this study provide crucial insights into basidiomycete GlcNAc catabolism. IMPORTANCEN-Acetylglucosamine (GlcNAc) is recognized as not only the building block of chitin but also an important signaling molecule in fungi. The catabolic pathway of GlcNAc also plays an important role in vital biological processes in fungi. However, the utilization pathway of GlcNAc in the phylum Basidiomycota, which contains more than 41,000 species, remains unknown. Cryptococcus deneoformans is a representative basidiomycetous pathogen that causes life-threatening meningitis. In this study, we characterized a gene cluster essential for GlcNAc utilization in C. deneoformans and identified a novel GlcNAc kinase. The results of this study provide important insights into basidiomycete GlcNAc catabolism and offer a starting point for revealing its role in pathogenesis.


Assuntos
Candida albicans , Cryptococcus , Acetilglucosamina/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...